If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3m^2-5m-4=0
a = 3; b = -5; c = -4;
Δ = b2-4ac
Δ = -52-4·3·(-4)
Δ = 73
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-\sqrt{73}}{2*3}=\frac{5-\sqrt{73}}{6} $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+\sqrt{73}}{2*3}=\frac{5+\sqrt{73}}{6} $
| 5=3/4l | | 6x+2x=5+17 | | 2(15+x)=74 | | 2x=393 | | 15x+8=15(x+3) | | 2(15+x)=48 | | 2u^2-3u=-1 | | -9.7=h+9.7 | | 5^(x+6)=25 | | 3(w+6)-8w=23 | | 0.99/a=9/11 | | -(9-x)=x+11 | | 3x–20=x+9 | | 1/2(6x-2)-0.25=-5x-0.75 | | 2^2-3u+1=0 | | -1.50t=-12 | | (3x-11)(2x+11)=0 | | -4(2x-6)=2(10-4x | | g-7=7 | | 12x24=1000 | | x+4/2=39 | | 9+9=18+3y | | 193-9x=16 | | 5×-1=4x+1 | | g-10.2=4.23 | | 33,7-(1,5s+2,3)=3,4s-(0,4-5,7s) | | 6x+1=2(4x-2) | | y/2-11=5 | | 2/3x=320 | | -3k+31=5(k+7)-4k | | 18-6t=6(1+3t) | | 2x+1=5x-14=3x-4 |